
7: Value Function Approximation-1

Reinforcement Learning

Lecture 7: Value Function Approximation

Lecturer: Haim Permuter Scribe: Nave Algarici

I. INTRODUCTION

II. VALUE FUNCTION APPROXIMATION

In previous lectures, we have represented the value function using a lookup table,

where every state s has an entry V (s), or alternatively, every state-action pair s, a has

an entry Q(s, a). The problem comes when we start dealing with large MDPs. In such

cases, there are to many states and/or actions to store in memory, and the process of

learning each state’s value individually takes too long. The solution in this case is to

Estimate the value function with function approximation:

v̂(s, w) ≈ vπ(s). (1)

where w a trainable parameter vector. Using this approximation we can generalize from

seen states to unseen states, and update parameter vector w to improve the accuracy of

the function approximation.

The function approximator can be one of many options, including: Linear combinations

of features, Neural Network, Decision Tree, Nearest Neighbour, etc. We will consider

differentiable function approximators: Linear combinations of features and Neural Net-

works.

A. Value Function Approximation By Stochastic Gradient Descent

Reminder 1 (Gradient Descent) Let J(w) be a differentiable function of parameter

vector w. Define the gradient of J(w) to be

∇wJ(w) =


∂J(w)
∂w1

...
∂J(w)
∂wn

 . (2)



7: Value Function Approximation-2

To find a local minimum of J(w), adjust w in the opposite direction of the gradient

∆w = −1

2
α∇wJ(w). (3)

Our goal is to find a parameter vector w that minimizes the mean-squared error between

the approximate value function v̂(s, w) and the true value function vπ(s). The objective

function:

J(w) = Eπ
[
(vπ(S)− v̂(S,w))2

]
. (4)

Gradient descent finds a local minimum

∆w = −1

2
α∇wJ(w) (5)

= αEπ [(vπ(S)− v̂(S,w))∇wv̂(S,w)] , (6)

and Stochastic gradient descent (SGD) samples the gradient

∆w = α(vπ(S)− v̂(S,w))∇wv̂(S,w). (7)

The expected update of SGD is equal to the full gradient update.

Each state will be represented by a feature vector

x(S) =


x1(S)

...

xn(S)

 . (8)

This feature vector can many things, such as: distance of a robot from landmarks, Chess

pieces configuration on a board, etc.

Example 1 (Linear Value function Approximation) In this case, the value function is

represented by a linear combination of features

v̂(S,w) = x(S)Tw =
n∑
j=1

xj(S)wj, (9)

and the objective function is quadratic in parameters w

J(w) = Eπ
[
(vπ(S)− x(S)Tw)2

]
. (10)

By deriving the objective function by w

∇wv̂(S,w) = x(S), (11)



7: Value Function Approximation-3

we get the update rule

∆w = α(vπ(S)− x(S)Tw)x(S). (12)

Note 1 Table lookup is a special case of linear value function approximation, where the

table lookup features are

xtable(S) =


1(S = s1)

...

1(S = sn)

 , (13)

and the parameter vector w is the value of each individual state

v̂(S,w) =
(
1(S = s1), . . . , 1(S = sn)

)
w1

...

wn

 . (14)

B. Incremental Prediction Algorithms

Up until this point, we have assumed the true value function vπ(s) is given, but in real

world problems, we observe only rewards. In practise, we substitute a target for vπ(s)

using different methods. We will discuss four of them.

• For Monte Carlo (MC), the target is the return Gt

∆w = α(Gt − v̂(St, w))∇wv̂(St, w). (15)

• For TD(0), the target is the TD target Rt+1 + γv̂(St+1, w)

∆w = α(Rt+1 + γv̂(St+1, w)− v̂(St, w))∇wv̂(St, w). (16)

• For forward-view TD(λ), the target is the lambda-return Gλ
t

∆w = α(Gλ
t − v̂(St, w))∇wv̂(St, w). (17)

• For backward-view TD(λ). the equivalent update is

δt = Rt+1 + γv̂(St+1, w)− v̂(St, w), (18)

Et = γλEt−1 +∇wv̂(St, w), (19)

∆w = αδtEt. (20)



7: Value Function Approximation-4

III. ACTION-VALUE FUNCTION APPROXIMATION

In lecture 5, we learned controlling the policy by repeating two steps: policy evaluation

and policy improvement. Action-value function approximation is used to perform an ap-

proximate policy evaluation, for the same reasons that were mentioned in the introduction.

After that, an ε-greedy policy improvement can be applied using this approximation. The

approximation process of the Action-value function is similar to the value function. The

Action-value function approximation:

q̂(s, a, w) ≈ qπ(s, a). (21)

The objective function:

J(w) = Eπ
[
(qπ(S,A)− q̂(S,A,w))2

]
. (22)

Using SGD we can find a local minimum

∆w = −1

2
α∇wJ(w) (23)

= α(qπ(S,A)− q̂(S,A,w))∇wq̂(S,A,w). (24)

Each state-action pair will be represented by a feature vector

x(S) =


x1(S,A)

...

xn(S,A)

 . (25)

Example 2 (Linear Action-Value function Approximation) In this case, the action-

value function is represented by a linear combination of features

q̂(S,A,w) = x(S,A)Tw =
n∑
j=1

xj(S,A)wj, (26)

The SGD update rule:

∇wq̂(S,A,w) = x(S,A), (27)

∆w = α(qπ(S,A)− x(S,A)Tw)x(S,A). (28)



7: Value Function Approximation-5

A. Incremental Control Algorithms

As in prediction, we will substitute a target for qπ(s, a).

• For Monte Carlo (MC), the target is the return Gt

∆w = α(Gt − q̂(St, At, w))∇wq̂(St, At, w). (29)

• For TD(0), the target is the TD target Rt+1 + γv̂(St+1, At+1, w)

∆w = α(Rt+1 + γq̂(St+1, At+1, w)− q̂(St, At, w))∇wq̂(St, At, w). (30)

• For forward-view TD(λ), the target is the lambda-return Gλ
t

∆w = α(Gλ
t − q̂(St, At, w))∇wq̂(St, At, w). (31)

• For backward-view TD(λ). the equivalent update is

δt = Rt+1 + γq̂(St+1, At+1, w)− q̂(St, At, w), (32)

Et = γλEt−1 +∇wq̂(St, At, w), (33)

∆w = αδtEt. (34)

IV. BATCH REINFORCEMENT LEARNING

This method addresses the objective of best fitting the value function to the whole

training data. Instead of using only the last data point, or event, to improve the accuracy

of the value function, it can use all of the agent’s experience as training data, and improve

using it. This method gives us more stability and is more data efficient.

A. Stochastic Gradient Descent with Experience Replay

In this algorithm we sample randomly a state-value pair from the complete experience,

and use it for training the value function approximation.



7: Value Function Approximation-6

Algorithm 1 SGDExperienceReplay

Given D = {〈s1, vπ1 〉 , 〈s2, vπ2 〉 , . . . , 〈sT , vπT 〉}

repeat

Sample state, value from experience

〈s, vπ〉 ∼ D

Apply SGD update

∆w = α(vπ − v̂(s, w))∇wv̂(s, w)

REFERENCES

[1] UCL course on RL by David Silver, Lecture 6, Value Function Approximation.

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching files/FA.pdf.


	Introduction
	Value Function Approximation
	Value Function Approximation By Stochastic Gradient Descent
	Incremental Prediction Algorithms

	Action-Value Function Approximation
	Incremental Control Algorithms

	Batch Reinforcement Learning
	Stochastic Gradient Descent with Experience Replay

	References

